БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ ПО ТЕЛЕФОНАМ:
Россия
Москва и область
Санкт-Петербург и область
Многоканальная бесплатная горячая линия

Москва и МО +7 (499) 110-35-21
С-Петербург и ЛО +7 (812) 334-11-75
Бесплатный звонок по России

При каком виде деформации выполняется закон гука

При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

.

Также, в отдельных случаях можно находить коэффициент упругости.


Инфоinfo
См. также: Портал:Физика

Зако́н Гу́ка — утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. д.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком[1].

Следует иметь в виду, что закон Гука выполняется только при малых деформациях.


При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Закон Гука для тонкого стержня[править | править код]

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь — сила, которой растягивают (сжимают) стержень, — абсолютное удлинение (сжатие) стержня, а — коэффициент упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня.

При каком виде деформации выполняется закон гука

Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров.
Давайте попробуем узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

.

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Это интересно! Что такое закон всемирного тяготения: формула великого открытия

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности.

При каком виде деформации выполняется закон гука определение


Всё, что происходит в природе, основывается на действии различных сил – закон Гука является тому подтверждением. Это одно из основополагающих явлений науки.

Этот процесс является определяющим звеном процессов сжатия, изгибов, растяжения и других видоизменений материалов различных структур.

Разберёмся, в чем же заключается этот закон, как можно применить правило Гука на практике, и всегда ли оно выполняется.

  • Определение и формула закона Гука
  • Сила упругости
  • При каких условиях выполняется закон Гука
  • Как применить закон упругой деформации на практике
  • Заключение

Определение и формула закона Гука

Давно люди пытались объяснить происхождение явлений сжатия и растяжения.
Отсутствие знаний являлось причиной накопления экспериментальных данных.

При каком виде деформации выполняется закон гука определение и формула

Гука, определение: деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики,
  • предмет упругий,
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид.

Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Это интересно! Специальная теория относительности Эйнштейна: кратко и простыми словами

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости.

Так, рабочие должны точно знать, какой максимальный груз может поднять башенный кран или какую нагрузку выдержит фундамент будущего здания.

Ни один из поездов не обходится без деформации растяжения и сжатия, поэтому закон Гука справедлив и для этих ситуаций. Кроме того, механизм и принцип действия любых динамометров, которыми снабжены некоторые части технического оборудования, также основываются на этом замечательном законе.

Закон Гука выполняется во всех объектах, являющихся аналогами модели «пружинный маятник».

В обычной жизни, дома, можно видеть применимость этого закона в пружинах некоторых механизмов.

Таким образом, закон Гука применим во многих сферах жизни человека.

Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо движения, значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда,
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится.

Можно выделить зависимость от размеров стержня (площади поперечного сечения S и длины L) явно, записав коэффициент упругости как:

\[ k = \dfrac{ES}{L} \]

Величина E называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Если ввести относительное удлинение

\[ \varepsilon = \dfrac{\Delta l}{L} \]

и нормальное напряжение в поперечном сечении

\[ \sigma = \dfrac {F}{S} \]

то закон Гука в относительных единицах запишется как

\[ \sigma = E\varepsilon \]

В такой форме он справедлив для любых малых объёмов материала.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

\[ \Delta l = \dfrac{FL} {ES} \]

Следует иметь в виду, что закон Гука выполняется только при малых деформациях.

Закон Гука

Сила упругости, возникающая при малых деформациях тела, пропорционально удлинению тела и направлена в сторону, противоположную направлению перемещений частиц тела.

Fу = -кX

k — жесткость тела, зависит от формы и размеров тела, и от материала, из которого изготовлено тело, х — смещение.

Силы упругости обусловлены взаимодействиями зарядов, по своей природе являются электромагнитными.

Деформации, при которых удлинение прямо пропорционально деформирующей силе называются упругими.

Явление упругой деформации использовано в устройстве приборов для измерения сил — динамометров.

Дата добавления: 2014-10-31; просмотров: 9; Нарушение авторских прав

<== предыдущая лекция | следующая лекция == Механические колебания. Параметры колебательного движения. | Колебательный контур.

Это и послужило началом экспериментов.

Аксиома Гука гласит:

При очень маленьких упругих воздействиях создается сила, пропорциональная изменению объекта, но противоположного знака по абсолютной величине перемещения его частиц.

Математически это определение можно записать следующим образом:

Fx = Fупр = —k * x,

где в левой части указывается:

сила, действующая на тело;

x – перемещение тела (м);

k – коэффициент деформации, зависящий от свойств объекта.

Единица измерения, как и любой другой силы, является Ньютон.

Кстати, k еще называют жёсткостью тела, она измеряется в H/м.

Учитывая, что сила величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться.

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства.

Комментарии 0

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *